

[Multi
Useless
Dungeon]

September 12

2008
[This document is the accompanying documentation for the project for
the Distributed Programming class. Here we outline design choices and
architectural decisions made and compromises]

Architectural
Documentation

Tamar Christina

Timon Bijlsma

Pieter van Ede

[Multi Useless Dungeon] 2008

2 | P a g e

Table of Contents
Introduction ... 3

Languages .. 3

Planning ... 3

Work distribution .. 3

Design .. 3

UML ... 3

Class diagram ... 3

IDL .. 5

Implementation ... 6

Difficulties .. 6

Interoperability .. 6

Security .. 6

Usage ... 7

Conclusion ... 7

Works Cited ... 7

[Multi Useless Dungeon] 2008

3 | P a g e

Introduction

Languages
We are planning to use the programming language Java for our server and primary client. For the

secondary client we plan to use C#. As interoperability layer we are planning to use CORBA.

Planning

Work distribution

Person Activity

Pieter UML Class diagram, document manager, design presentation, Java server

implementation, Java client implementation

Tamar UML Class diagram, IDL, C# client, C# bot, helped with many Java-issues,

prepared final presentation

Timon UML Class diagram, sequence diagram, UML use cases, IDL, GUI, animation, Java

server implementation, Java server AI, final presentation

Design

UML

Class diagram

[Multi Useless Dungeon] 2008

4 | P a g e

On the right you see the first part of our class diagram. This

part models the game itself. It contains a room which

consists of multiple GameTiles and each GameTile can

contain multiple GameObjects. These could be creatures,

which consist of multiple subtypes and for example

transporters or just plants and tables. The special thing to

note, is that a creature has an inventory of several types of

items, which he may drop after a battle.

Below you can see the client part of the design document.

As you can see, we have a base class which starts a typical

model-view-controller architecture. We also have a network

class, which handles all communication with the server. The

idea of our architecture is that the game (the model) has a

local copy of the Room with its accompanying GameTiles

and GameObjects. We make these local copies to enable

real time animation in the client. How we will keep the

clients updated is the topic which we will discuss when we

arrive at the schema of the events.

For now it is worth noting that the client gets a local copy of a room from the server with all the objects

within that room. Then all things that change in the room are being sent to the client via push

technology, whereas when the client changes to another room, this new room is acquired via pull

technology.

Creature

Room

GameObject

GameTile

1

*

1

*

1

*

Player Monster

Inventory

1 1

Item

1

*

WeaponArmorUsableItem

Transporter

[Network] Game

GameView

GameLoop/Logic

1
1

1

1

1 1

1

1

1 1

Program

1

1

Client

[Multi Useless Dungeon] 2008

5 | P a g e

Server

State

[Server]

1
1

1

*

User

* 1

On the right you see the server. It maintains the state of all

game rooms, as well as the global game state. This includes

the table of all users registered to the game. Also the state

has a local copy of all game rooms present in the game,

along with their contents. The server object handles all

communication with the clients and the authentication. It

also handles all the logic, for example it calculates the

damage done by an attack and updates the state and also

sends this modified state via events to all clients currently in

the affected room. It should be noted that the Server object

here and the Network object in the client are remote

objects.

And then last but not least the events hierarchy. Here you see the events that are being sent between

the server and the client. This way,

each client can update it’s own local

game state and enable proper real-

time animations.

To wrap this description up, the idea

of our architecture is as follows: the

client enters a room and receives a

local copy of the room and it’s

contents. Then for every action the

client performs in this room, it sends

an event to the server. The server

will compute the effects on the game

room and it’s contents and sends the

result of this to all other clients. And

when the client finally leaves the

room and enters another, the whole

process starts again. This puts a

relative high strain on the server, but

for the small amount of expected

users this won’t be a problem. The advantage of this approach, is that it allows the clients to have

realtime animation.

IDL
Because our IDL grew between the design phase and the implementation phase, including it inside this

document would make it hard to read. Therefore we direct you to the accompanying file DOS.idl for our

interface definitions.

RoomEventChatEvent

Global Events

Event

RoomInitEvent

MoveEvent

UseEvent DropEvent UseObjectEvent

AttackEvent

AddObjectEvent

RemoveObjectEvent

PickupEvent

[Multi Useless Dungeon] 2008

6 | P a g e

The above describes the remote interfaces the clients and the server use. Basically, the client calls

methods on the server to request certain actions like moving and picking up items. These methods can

fail for a number of reasons, so they return a boolean indicating whether or not the action succeeds. We

could also throw an exception when a request is denied, but we believe that throwing exceptions should

be reserved for the actually exceptional cases, not for operations that fail very often.

The server may also push data to the client on its own accord. Event objects are used to transport

messages from the server to the clients. We use a subclass for every different type of event that can be

sent.

Implementation
As stated in the introduction section, we implemented our game in Java. We created both the server as

well as a real-time animated client in Java. We made them communicate via CORBA and we used the

standard Java libraries for this. Then we made a second real-time animated client in C#, using the .NET

framework. We made this client communicate with the external library IIOP.NET.

Difficulties
One of the major difficulties was having the C# client communicate with the Java server. The cause of

this problem was that the used library (which was apparently the only mature CORBA library for C#) was

poorly documented, and the documentation that was available was for RMI only. Therefore we had to

decompile the library to inspect its internal structure to find out how we should use it.

Interoperability
From the previous section you would conclude that interoperability is not guaranteed, but fortunately

that is not true. The only real problem is finding a good library and understand it’s quirks, and a client in

another programming language can be easily made. The new client of course has to have stubs and

skeletons for the functions the server offers and the messages it can receive from the server. To prevent

odd problems, we serialized the objects as XML, so the client can start easily by parsing and processing

the events it receives.

Security
For this application we are going to authenticate users by means of username/password combinations.

We are going to use an authentication key which is returned by the login procedure after successful login

attempts.

The returned key will be used to prevent unauthorized changes by users to the game world and/or to

other players’ data. However since CORBA normally operates over unsecure channels, this setup is

vulnerable to man-in-the-middle attacks, where someone intercepts the authentication key. With this

key they can disguise as a player and harm the game world or other players. To prevent this kind of

[Multi Useless Dungeon] 2008

7 | P a g e

abuse, we need to make CORBA use SSL (1). This is a feature we won’t implement, but will instantly solve

the man-in-the-middle attacks. The drawback is some additional overhead.

Usage
Before we wrap up this discussion of how we designed and implemented everything, you should know

how to start the game. You should first start the ORB, which is located in the bin directory of your Java

runtime system. The command is:

 orbd -ORBInitialPort someport -ORBInitialHost somehost

Here you specify which port and host the orb is going to use. In the typical test setup, you run everything

from the same machine, so the ORBInitialHost parameter can be omitted. Then you start the server and

the client, giving it the same parameters as you gave the orb (you are here also allowed to leave out

parameters):

 java -jar mudserver.jar -ORBInitialPort someport -ORBInitialHost somehost

 java -jar mud.jar -ORBInitialPort someport -ORBInitialHost somehost

Then you start the C# client with this command:

 MUD.Client.exe --ORBInitialPort someport --ORBInitialHost somehost

Conclusion
We implemented a Multi User Dungeon, using CORBA as the intermediary and Java en C# as participating

programming languages. We communicate between clients and server, by letting clients pull the server

to let the server know something is about to change. On the other hand the server pushes the results of

these requests to all the clients. We also duplicated the game state in the clients, to allow local

animations. Additionally, we implemented a bot in C# and some basic AI in the Java server as well. At the

end we also described some measures that could be taken to make this game more secure, so players

cannot be hijacked and to prevent other nasty stuff from happening.

Works Cited
1. Iona Technologies. What does CORBA SSL/TLS Provide? . Supports Docs. [Online] Iona Technologies.

[Cited: September 23, 2008.]

http://www.ionatechnologies.com/support/docs/e2a/asp/5.0/mainframe/ssl/html/Intro2.html.

	Introduction
	Languages

	Planning
	Work distribution

	Design
	UML
	Class diagram

	IDL

	Implementation
	Difficulties

	Interoperability
	Security
	Usage
	Conclusion
	Works Cited

